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∆9-Tetrahydrocannabinol 1 and its isomers were synthesized via domino-type methodology.
The first approach, leading to (±)-1, relies on the Mo(IV)-catalyzed, one-pot cascade reaction
of citral (4) with olivetol (15), affording (±)-∆9-tetrahydrocannabinol as a 69 : 31 mixture of
the trans- (natural) and cis-isomers in 20% yield. The alternative approach, leading to natu-
ral (–)-1, commenced with epoxidation of (+)-limonene (R)-(+)-16; opening of the resulting
cis-epoxide 17 with PhSeNa, followed by elimination, afforded tertiary alcohol 21, whose ac-
etate 22 was treated with olivetol 15 in the presence of Mo(II) catalyst IV to afford (–)-1 in
52% yield.
Keywords: Terpenoids; Cannabinoids; Total synthesis; Asymmetric catalysis; Allylic substitu-
tion; Cascade reactions; Natural products.

Few natural products have enjoyed as much controversy as ∆9-tetrahydro-
cannabinol 1 and its ∆8-isomer 2 (Chart 1), the active constituents of mari-
huana1. While banned in most countries of the Western civilization, this
ancient plant has been legalized in some, and its application in specific me-
dicinal indications is being debated in others, thereby creating a gray area
on the borderline between legality and criminal offense.
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In view of the recently revitalized debate on legalizing marihuana in the
U.K. and other countries for terminally ill patients to ease their suffering,
we felt that a new, preferably catalytic approach to 1, 2, and their ana-
logues, would be justified. Furthermore, 1 and its isomers thus synthesized
could also be employed as standards in forensic science and related disci-
plines concerned with drug-abuse detection. Herein, we present two
straightforward syntheses, one producing a racemate in one step (and ame-
nable to asymmetric catalysis) and the other utilizing the chiral pool.

We have recently developed a new set of Lewis-acidic Mo(II) catalysts,
such as IV and V (Scheme 1), which proved to promote an intramolecular
carbonyl-ene cyclization of citronellal (3), affording mainly the cis-product 5
(Scheme 2)2. By contrast, most of the known Lewis acids produce mainly the
trans-isomer 7. The molybdenum anomaly was attributed by us to the steric
bulk of the catalyst, namely to the protruding CO group attached to Mo
that renders the transition state leading to the cis-product lower in energy2.
The same Mo(II) complex proved to catalyze allylic substitution of allylic
acetates with silyl enol ethers3 and electron-rich aromatics and
heteroaromatics4. Whilst these substitution reactions were successful in the
case of allylic esters, the corresponding alcohols proved inert. However, we
have shown that allylic alcohols would react with Mo(IV) catalysts, such as
II and III (ref.5), which can be readily generated from the acac complex I
(which, in turn, is obtained from MoCl5 and acac6) by an anion exchange
with TfOAg (ref.5) or AgSbF6 (I → II or III). Finally, we have also observed
the electrophilic cyclization of olefinic phenols with both Mo(II) and
Mo(IV) complexes in selected examples4.

We reasoned that the three reactions, i.e., ene-cyclization, allylic substitu-
tion, and electrophilic cyclization (vide supra), might be tamed to occur in a
one-pot cascade, provided that suitably designed substrates are employed.
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Thus, we have envisaged that cyclization of (Z)-citral (4) would generate cy-
clic dienol 6 (Scheme 2) that could react in situ with an electron-rich phe-
nol, such as p-cresol (10), to furnish the ortho-substituted4 product 12,
whose electrophilic cyclization would lead to the tricyclic skeleton 14.

Model experiments with citral (4), commercially available as ca 1 : 1
(E/Z)-mixture7, phenol (9), and the Mo(IV) catalyst II or III met with partial
success. Thus, at room temperature and with hexafluoroantimonate III as
catalyst, the expected tricyclic product 13 was formed in 24% yield8 as a ca
7 : 1 mixture of cis- and trans-annulated isomers.9

Since the relatively low yield in the case of phenol (9) can be partly at-
tributed to the non-regioselective electrophilic aromatic substitution (fur-
nishing the corresponding para-isomer along with 11), we next carried out
the same cyclization cascade with p-cresol (10), whose para-position is
blocked. Indeed, an increased yield was observed (42%) and the tricyclic
product 14 was isolated as a 3 : 1 cis-/trans-mixture (again with III as cata-
lyst).

The ene-cyclization of 4 can be viewed as initially generating a mixture of
epimers 6 and 8, in which the former may prevail in analogy to the
cyclization of 3. However, the instability of the allylic alcohol precluded a
detailed NMR analysis of the pure material.
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Being encouraged by the successful model experiments, we then focused
on the tetrahydrocannabinol itself. Indeed, the same sequence, this time
carried out with olivetol (15) as the electron-rich phenol (CH2Cl2, room
temperature, 4 h), and III as the catalyst [(acac)2MoCl2 (3 mole %), AgSbF6
(6 mole %), CH2Cl2, room temperature, 4 h], produced8 (±)-1 (20%), iso-
lated by flash chromatography as a 3 : 7 cis-/trans-mixture (Scheme 3). It is
noteworthy that the stereochemistry of annulation has now been altered in
favour of the natural trans-isomer. This effect can be attributed either to the
influence of the additional phenolic hydroxyl in the allylic substitution
step, or to the intervention of an alternative mechanism that would first in-
volve the Lewis-acid catalyzed electrophilic attack by the carbonyl group of
citral (4) at olivetol (15) followed by cyclization9b,10 (Scheme 4). Since a
gradual shift from cis- to trans-epimer correlates with the increasing elec-
tron density of the aromatic ring (phenol-cresol-olivetol), this alternative
seems more likely.

The one-pot procedure highlighted in Scheme 3 should be amenable to
asymmetric catalysis, where a chiral catalyst would control the absolute
stereochemistry of the initial ene-cyclization11. However, our experiments
with various chiral ligands, including our recently developed chiral
bipyridines12, were unsuccessful to date. Therefore, in order to synthesize
natural (–)-1, we turned to the chiral pool and employed a modified strat-

egy. The crude cis-/trans-mixture (ca 1 : 1) of epoxides 17 and 18, obtained
by epoxidation of (R)-(+)-limonene (R)-(+)-16 (88% ee) with MCPBA
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(Scheme 5)13, was treated with PhSeNa (PhSeSePh, NaBH4, EtOH, reflux,
2 h) to afford a mixture of isomeric phenylselenenyl derivatives 19 and 20
(refs13,14) which, without purification, was subjected to oxidation (30%
aqueous H2O2, THF, room temperature, 5 h). While the seleneoxide arising
from 20 spontaneously eliminated at room temperature to produce 23, that
derived from 19 proved stable, which allowed a simple separation of the
liquid olefin 23 from the solid seleneoxide by extracting the former with
petroleum ether. Heating of the seleneoxide thus obtained from 19 in pure
state at reflux in CHCl3 for 30 min afforded pure13–15 21 (30% overall from
limonene)16. The latter allylic alcohol 21 was then acetylated (Ac2O, DMAP,
Et3N, Et2O, room temperature, 4 h) to produce tertiary acetate 22 (85%).

The catalytic reaction of both alcohol 21 and its acetate 22 with olivetol
(15) was investigated with several molybdenum catalysts (Scheme 6 and
Table I). Thus, the reaction of alcohol 21, catalyzed by the Mo(IV) triflate
complex II in CH2Cl2 at room temperature, gave a mixture of two tricyclic
products, namely ∆8-tetrahydrocannabinol (–)-2 and its isomer17 25, in
which the former prevailed (Table I, entry 1). While the formation (–)-2 re-
sults from the isomerization of the initially generated ∆9-THC (–)-1 to its
thermodynamically more stable isomer, 25 arises from a “wrong”
cyclization of the same intermediate in the final step. Lowering the reac-
tion temperature to –20 °C led to a longer reaction time and formation of
bicyclic products 26 and 27 (entry 2). Apparently, the final cyclization was
disabled in this instance by the low temperature. Acetate 22 gave similar re-
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TABLE I
Molybdenum-catalyzed reaction of allylic substrates 20 and 21a with olivetol 15 in CH2Cl2
at room temperature

Entry
Allyl

comp.
Catalyst

Temp.
°C Time

Yield, %
Total yield

%
1 2 24 25 26 27

1 21 II 20 15 min 56 14 70

2 21 II –20 3 h 20 52 72

3 22 II 20 15 min 52 b b 52

4 22 II –10 30 min 13 22 30 65

5 22 III 20 15 min 74 b b 74

6 22 IV 20 4 h 51 23 72

7 22 V 20 4 h 39 12 14 65

a The enantiopurity of the starting alcohol 21 and acetate 22 and of the product should re-
flect that of (+)-limonene 16 (88% ee; vide supra). b The compound has not been isolated.



sults with the same catalyst (entries 3 and 4). The Mo(IV) hexafluoro-
antimonate catalyst III gave a much cleaner reaction, with (–)-2 being the
only isolable product in 74% yield (entry 5).

While the Mo(IV) catalysts induced the double bond isomerization to
produce the ∆8-isomer (–)-2 (Table I, entries 1–5), switching to Mo(II)
proved to eliminate this problem and, although their application lead to
the deceleration of the cascade, the desired ∆9-isomer (–)-1 became the
main product. Thus, with bromide IV, natural ∆9-THC (–)-1 was obtained in
51% yield (entry 6) along with the product of “wrong” cyclization 24
(23%). With the bimetallic catalyst V, the final cyclization was incomplete,
affording ∆9-THC (–)-1 (39%) and its bicyclic precursor 26 (14%), again
along with a small amount of the “wrong” tricyclic product 24 (entry 7). In
view of the slightly lower overall yield of the latter reaction, it appears that
the dibromide complex IV can be regarded as the most suitable catalyst,
with practically no isomerization of ∆9- to ∆8-THC.

In none of these transformation we could detect more than trace
amounts of the cis-annulated diastereoisomer (–)-1 or (–)-2 (that would be
analogous to 13/14). This effect can be understood in view of the single
diastereoisomer of 21/22 being employed as an intermediate in this route,
as opposed to the diastereoisomeric mixture of alcohols 6 and 8, generated
in situ in the one-pot approach.

In summary, we have synthesized racemic ∆9-tetrahydrocannabinol 1
from the two commercially available precursors 4 and 15 in a cascade,
one-pot reaction, catalyzed by the Lewis-acidic Mo(IV) complex III
(Scheme 3). An alternative route, starting with scalemic limonene (R)-(+)-16
and employing the Mo(II) complex IV as the optimal catalyst, afforded
(–)-1 (Schemes 5 and 6). This methodology has the advantage of giving
cleaner products, compared to the conventional Lewis acids1,10,11.

EXPERIMENTAL

General Methods

Optical rotations were measured on a Perkin–Elmer 341 polarimeter; [α]D values are given in
10–1 deg cm2 g–1. The NMR spectra were recorded in CDCl3, 1H at 250 and 400 MHz and 13C
at 62.9 and 100.6 MHz with chloroform-d1 (δ 7.26, 1H; δ 77.0, 13C) as internal standard;
2D-techniques were used to establish the structures and to assign the signals. Chemical
shifts are given in ppm (δ-scale), coupling constants (J) in Hz. The mass spectra (EI and/or
CI) were measured on a dual sector mass spectrometer using direct inlet and the lowest tem-
perature enabling evaporation. The GC MS analysis was performed with RSL-150 column
(25 m × 0.25 mm). All reactions were performed under an atmosphere of dry, oxygen-free
nitrogen. Solvents and solutions were transferred by a syringe-septum technique. All re-
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agents were purchased at highest commercial quality and used without further purification,
unless otherwise stated. Yields are given for isolated product showing one spot on a TLC
plate. The identity of the products prepared by different methods was checked by compari-
son of their NMR, IR, and MS data and by the TLC behavior. Most of the products are
known compounds. Complexes I, IV, and V were prepared following literature procedures.

General Procedure A: Reaction of Citral (4) with Phenols 9, 10, and 15
Catalyzed by Mo(IV) Complex III

(acac)2MoCl2 complex5,6 (10 mg, 0.029 mmol, ca 3 mole %) was added to a stirred solution
of citral 4 (2.0 mmol) and an aromatic compound (1.0 mmol) in CH2Cl2 (5 ml) at room
temperature, followed by addition of solid silver hexafluoroantimonate or triflate (ca
0.060 mmol). The mixture was stirred under nitrogen for 4 h, then diluted with ether
(20 ml), and the ethereal solution was washed successively with 5% aqueous NaHCO3 and
water and dried with MgSO4. The solvent was evaporated under reduced pressure to give a
crude product, which was purified by flash chromatography on a neutral silica gel column
with a 9 : 1 mixture of hexane–ethyl acetate.

General Procedure B: Reaction of Olivetol (15) with Allylic Substrates 21 and 22
Catalyzed by Mo(IV) Complex III

(acac)2MoCl2 complex5,6 (5 mg, 0.014 mmol, ca 3 mole %) was added to a stirred solution of
the allylic substrate 21 or 22 (ca 0.5 mmol) and olivetol 15 (0.6 mmol) in CH2Cl2 (5 ml) at
room temperature, followed by addition of solid silver hexafluoroantimonate or triflate (ca
0.060 mmol). The mixture was stirred under nitrogen at the temperature specified. After the
reaction was complete (control by TLC, silica gel, hexane–ethyl acetate 9 : 1), work-up pro-
cedure was performed as described in the previous experiment. For yields and other reaction
conditions see Table I.

General Procedure C: Reaction of Olivetol (15) with Allylic Acetate 22
Catalyzed by Mo(II) Complexes IV and V

Complex IV or V (refs3,4) (ca 3–5 mole %) was added to a stirred solution of the allylic ace-
tate 22 (ca 0.5 mmol) and olivetol 15 (0.6 mmol) in CH2Cl2 (5 ml) at room temperature.
The mixture was stirred under nitrogen at the temperature specified (Table I). Work-up pro-
cedure was performed as described in General Procedure A. For yields and other reaction
conditions see Table I.

(±)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol [other name
(±)-∆9-tetrahydrocannabinol] (±)-(1)9b. Obtained from 4 and 15 as a 69 : 31 mixture of
trans-/cis-isomers as a viscous pale yellow oil (20%). EI MS, m/z (%): 314 (86, M•+), 299 (88),
271 (53), 258 (35), 231 (100), 193 (19), 119 (10), 91 (10). Cis-isomer: 1H NMR (taken in a
mixture with (±)-∆9-trans-THC): 0.90 (t, 3 H, J = 6.6, MeC4H8); 1.27 and 1.39 (2 × s, 2 × 3 H,
6-Me2); 1.69 (br s, 3 H, 9-Me); 3.55 (br s, 1 H, 10a-H); 5.00 (br s, 1 H, OH); 6.13 and 6.24
(2 × s, 2 × 1 H, 2,4-H); 6.27 (br s, 1 H, 10-H).

(–)-(6aR,10aR)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol [other
name (–)-trans-∆9-tetrahydrocannabinol] (–)-(1)9b. 1H NMR (taken in a mixture with 24): 0.87
(t, 3 H, J = 6.6, MeC4H8); 1.08 and 1.40 (2 × s, 2 × 3 H, 6-Me2); 1.67 (br s, 3 H, 9-Me); 3.20
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(br d, 1 H, J = 10.7, 10a-H); 5.18 (br s, 1 H, OH); 6.12 and 6.26 (2 × d, 2 × 1 H, J = 1.3,
2,4-H); 6.32 (br s, 1 H, 10-H).

(–)-(6aR,10aR)-6,6,9-Trimethyl-3-pentyl-6a,7,10,10a-tetrahydro-6H-benzo[c]chromen-1-ol [other
name (–)-trans-∆8-tetrahydrocannabinol] (–)-(2)9b. Viscous pale yellow oil, [ ]α D

21 –225.0 (c 1.35,
EtOH) (ref.17 gives [α]D –246 (c 0.11, EtOH) for enantiopure 2). 1H NMR: 0.88 (t, 3 H, J =
6.6, MeC4H8); 1.08 and 1.40 (2 × s, 2 × 3 H, 6-Me2); 1.29 (m, 4 H); 1.55 (m, 2 H); 1.67 (br s,
3 H, 9-Me); 1.80 (m, 3 H); 2.12 (m, 1 H); 2.43 (m, 2 H); 2.69 (m, 1 H); 3.20 (dd, 1 H, J =
16.3 and 4.1, 10a-H); 4.90 (br s, 1 H, OH); 5.42 (d, 1 H, J = 4.4, 7-H); 6.09 and 6.27 (2 × d,
2 × 1 H, J = 1.3, 2,4-H). 13C NMR: 14.4 (Me), 18.9 (Me), 22.9 (CH2), 23.9 (Me), 27.9 (Me),
28.3 (CH2), 31.0 (CH2), 31.9 (CH2), 32.0 (6a-CH), 35.8 (CH2), 36.4 (CH2), 45.3 (10a-CH),
77.1 (6-C), 108.1 and 110.4 (2,4-CH), 111.0 (C), 119.7 (8-CH), 135.2 (C), 143.1 (C), 155.1
(C), 155.2 (C).

(±)-cis-6,6,9-Trimethyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol (±)-(13). Obtained from
4 and 9 as a viscous pale yellow oil (24%). 1H NMR: 1.29 and 1.43 (2 × s, 2 × 3 H, 6-Me2);
1.59–2.08 (m, 5 H); 1.70 (br s, 3 H, 9-Me); 3.55 (br s, 1 H, 10a-H); 5.94 (d, 1 H, J = 4.1,
10-H); 6.74 (d, 1 H, J = 7.8, 4-H); 6.85 (t, 1 H, J = 7.5, 2-H); 7.05 (t, 1 H, J = 7.5, 2-H); 7.25
(d, 1 H, J = 7.5, 1-H). EI MS, m/z (%): 228 (100, M•+), 213 (60), 186 (11), 185 (67), 171 (13),
160 (21), 159 (12), 157 (12), 146 (10), 145 (73), 135 (16), 131 (12), 128 (11), 115 (15), 107
(16), 91 (17), 77 (12). EI HRMS, m/z: 228.15142 (calculated for C16H20O: 228.15142; M•+).

(±)–2,6,6,9-Tetramethyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol (±)-(14). Obtained
from 4 and 10 as a 3 : 1 mixture of cis-/trans-isomers as a viscous pale yellow oil (42%).
EI MS, m/z (%): 242 (100, M•+), 227 (46), 231 (12), 202 (11),199 (62), 197 (10), 185 (14), 174
(20), 171 (11), 165 (10), 159 (99), 145 (18), 135 (21), 128 (15), 121 (23), 115 (15), 107 (12),
105 (12), 91 (20), 84 (45), 77 (16). EI HRMS, m/z: 242.16712 (calculated for C17H22O:
242.16707; M•+). Cis-isomer: 1H NMR (taken in a mixture with the trans-isomer): 1.26 and
1.41 (2 × s, 2 × 3 H, 6-Me2); 1.50–2.12 (m, 5 H); 1.71 (br s, 3 H, 9-Me); 2.26 (s, 3 H, 2-Me);
3.52 (br s, 1 H, 10a-H); 5.93 (d, 1 H, J = 4.4, 10-H); 6.65 (d, 1 H, J = 8.2, 4-H); 6.86 (br d, 1 H,
J = 8.2, 3-H); 7.06 (br s, 1 H, 1-H). 13C NMR (taken in a mixture with the trans-isomer): 20.3
(CH2), 21.2 (Me), 24.0 (Me), 25.9 (Me), 27.0 (Me), 30.9 (CH2), 31.3 (6a-CH), 39.9 (10a-CH),
76.0 (6-C), 117.5 (CH), 122.6 (CH), 124.9 (C), 128.1 (CH), 129.2 (CH), 129.6 (C), 135.5 (C),
150.2 (C). Trans-isomer: 1H NMR (taken in a mixture with the cis-isomer): 2.29 (s, 3 H,
2-Me); 3.19 (br d, J = 10.5, 10a-H).

(–)-(2R,5R,6R)-5-Isopropenyl-2-methyl-9-pentyl-3,4,5,6-tetrahydro-2,6-methano-2H-1-benzoxo-
can-7-ol [other name (–)-∆8-iso-THC] (–)-(24)9b. 1H NMR (taken in a mixture with (–)-∆9-THC, 1):
3.48 (br s, 1 H, 6-H); 4.92 and 4.97 (2 × s, 2 × 1 H, 5-CH2=); 5.02 (br s, 1 H, OH); 6.11 and
6.28 (2 × s, 2 × 1 H, 8-H and 10-H).

(–)-(2R,6R)-5-Isopropylidene-2-methyl-9-pentyl-3,4,5,6-tetrahydro-2,6-methano-2H-1-benzoxo-
can-7-ol [other name (–)-∆6-iso-THC] (–)-(25)9b. Viscous pale yellow oil, [ ]α D

27 –160.0 (c 1.15,
CHCl3). 1H NMR 0.88 (t, 3 H, J = 6.6, MeC4H8); 1.29 (m, 4 H, MeCH2CH2); 1.35 (s, 3 H,
2-Me); 1.59 (m, 4 H); 1.66 and 1.92 (2 × s, 2 × 3 H, 5-Me2); 1.82 (m, 2 H); 2.04 (m, 1 H);
2.44 (m, 3 H); 4.16 (br s, 1 H, 6-H); 4.50 (br s, 1 H, OH); 6.12 and 6.29 (2 × d, 2 × 1 H, J =
1.5, 8-H and 10-H). 13C NMR: 14.4 (Me), 20.4 (Me), 21.0 (Me), 23.0 (CH2), 23.4 (CH2), 29.2
(Me), 30.4 (6-CH), 31.2 (CH2), 32.0 (CH2), 36.1 (CH2), 37.4 (CH2), 40.8 (CH2), 74.7 (2-C),
106.8 and 108.5 (8,10-CH), 110.5 (C), 122.0 (C), 132.2 (C), 143.1 (C), 153.0 (C), 157.3 (C).

(–)-2-(p-Mentha-2,8-dien-3-yl)pentylbenzene-1,3-diol [other name (–)-cannabidiol] (–)-(26)9b.
Viscous pale yellow oil, [ ]α D

22 –107.1 (c 1.00, EtOH), [ ]α D
23 –69.4 (c 1.65, CHCl3) (ref.9b gives

[α]D –126 (EtOH) for enantiopure 26). 1H NMR: 0.88 (t, 3 H, J = 6.6, MeC4H8); 1.29 (m, 4 H,
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MeCH2CH2); 1.56 (m, 2 H); 1.65 (s, 3 H, 8′-Me); 1.79 (br s, 3 H, 1′-Me); 1.82 (m, 2 H); 2.12
(m, 2 H); 2.43 (m, 3 H); 3.85 (br d, 1 H, J = 8.8, 3′-H); 4.56 and 4.66 (2 × s, 2 × 1 H, 9′-CH2);
5.57 (s, 1 H, 2′-H); 6.22 (br s, 2 H, 4-H and 5-H). 13C NMR: 14.6 (Me), 20.8 (Me), 23.1 (CH2),
24.3 (Me), 28.7 (CH2), 30.8 (CH2), 31.2 (CH2), 31.9 (CH2), 35.9 (CH2), 37.4 (4′-CH), 45.6
(3′-CH), 108.2 and 110.0 (4.6-CH), 111.4 (9′-CH2), 114.0 (C), 124.4 (2′-CH), 140.7 (C), 143.5
(C), 149.8 (C), 154.2 (C), 156.3 (C).

(–)-4-(p-Mentha-2,8-dien-3-yl)pentylbenzene-1,3-diol [other name (–)-abnormal cannabidiol]
(–)-(27)9b. Viscous pale yellow oil, [ ]α D

22 –74.3 (c 2.12, CHCl3) (ref.9b gives [α]D –76 (CHCl3)
for enantiopure 27). 1H NMR: 0.89 (t, 3 H, J = 6.6, MeC4H8); 1.30 (m, 4 H, MeCH2CH2);
1.46 (m, 2 H); 1.53 (s, 3 H, 8′-Me); 1.78 (br s, 3 H, 1′-Me); 1.81 (m, 2 H); 2.22 (m, 3 H); 2.51
(m, 2 H); 3.53 (br d, 1 H, J = 8.8, 3′-H); 4.46 and 4.64 (2 × s, 2 × 1 H, 9′-CH2); 5.52 (s, 1 H,
2′-H); 6.20 (s, 2 H, 2,6-H). 13C NMR: 14.4 (Me), 21.7 (Me), 22.9 (CH2), 24.0 (Me), 28.5 (CH2),
30.7 (CH2), 31.5 (CH2), 32.3 (CH2), 34.4 (CH2), 40.5 (4′-CH), 45.4 (3′-CH), 102.6 and 109.1
(2,6-CH), 111.8 (9′-CH2), 120.3 (C), 125.1 (2′-CH), 140.2 (C), 144.4 (C), 148.1 (C), 155.0 (C),
156.8 (C).

(+)-(1S,4R)-p-Mentha-2,8-dien-1-ol (21)

This compound was prepared from a 1 : 1 mixture of (1S,2R,4R)- and (1R,2S,4R)-limonene
oxides 17 and 18 (1.22 g, 8 mmol) following the literature procedure13. The crude product
was purified by column chromatography on silica gel (2 × 20 cm) with a 4 : 1 mixture of
hexane–ethyl acetate as eluent to afford the title compound as a colorless oil (370 mg, 30%).
21: [ ]α D

22 +68.2 (c 1.15, CH2Cl2) (ref.17 gives [α]D +73.6 or +76.0 (neat), and +73 (c 1.2,
CHCl3); ref.13a gives [α]D +76.8 neat for enantiopure 21). 1H NMR: 1.29 (s, 3 H, 1-Me);
1.57–1.85 (m, 4 H, 5,6-CH2); 1.74 (s, 3 H, 8-Me); 2.66 (m, 1 H, 4-H); 4.75 and 4.78 (2 × br s,
2 × 1 H, 9-CH2); 5.67 (m, 2 H, 2,3-H).

(+)-(1S,4R)-p-Mentha-2,8-dien-1-yl Acetate (22)13b

Acetic anhydride (260 mg, 2.5 mmol) was added dropwise to a stirred solution of alcohol 21
(240 mg, 1.58 mmol), triethyl amine (303 mg, 3 mmol), and 4-dimethylaminopyridine
(20 mg, 0.16 mmol) in ether (25 ml) at room temperature. The mixture was stirred at room
temperature for 4 h, then it was diluted with water (30 ml) and extracted with ether (3 ×
20 ml). The combined ether extracts were dried over MgSO4 and the ether was removed in a
vacuum. The residue was passed through a silica gel column (2 × 10 cm) with a 9 : 1 mix-
ture of hexane–ethyl acetate as eluent to afford the 22 as a colorless oil (260 mg, 85%).
1H NMR: 1.46–1.76 and 2.13 (m, 4 H, 5,6-CH2); 1.55 (s, 3 H, 1-Me); 1.71 (s, 3 H, 8-Me); 1.96
(s, 3 H, MeCO); 2.70 (m, 1 H, 4-H); 4.76 (br s, 2 H, 9-CH2); 5.70 (dd, 1 H, J = 10.1 and 1.9,
3-H); 6.17 (dq, 1 H, J = 10.1 and 1.3, 2-H).
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